Dissecting the contribution of microtubule behaviour in adventitious root induction
نویسندگان
چکیده
Induction of adventitious roots (ARs) in recalcitrant plants often culminates in cell division and callus formation rather than root differentiation. Evidence is provided here to suggest that microtubules (MTs) play a role in the shift from cell division to cell differentiation during AR induction. First, it was found that fewer ARs form in the temperature-sensitive mutant mor1-1, in which the MT-associated protein MOR1 is mutated, and in bot1-1, in which the MT-severing protein katanin is mutated. In the two latter mutants, MT dynamics and form are perturbed. By contrast, the number of ARs increased in RIC1-OX3 plants, in which MT bundling is enhanced and katanin is activated. In addition, any1 plants in which cell walls are perturbed made more ARs than wild-type plants. MT perturbations during AR induction in mor1-1 or in wild-type hypocotyls treated with oryzalin led to the formation of amorphous clusters of cells reminiscent of callus. In these cells a specific pattern of polarized light retardation by the cell walls was lost. PIN1 polarization and auxin maxima were hampered and differentiation of the epidermis was inhibited. It is concluded that a fine-tuned crosstalk between MTs, cell walls, and auxin transport is required for proper AR induction.
منابع مشابه
Effect of Seasons, Gender and Agrobacterium rhizogenes Strains on Adventitious Root Induction of Male and Female Juniperus communis L.
Scrutinizing of different aspects in vegetative propagation of Iranian J. communis L. is of prime importance in order to prevent extinction of such valuable conifer. In this research, the effects of different seasons, gender, different chemical compounds (IBA, PBZ, putrescine and sodium nitroprusside) and three strains of Agrobacterium rhizogenes on ex-vitro rooting c...
متن کاملInduction of DrsB1-CBDAvr4 Recombinant Protein in Hairy and Adventitious Roots of T1 Transgenic Plants
Hairy and adventitious roots are efficient systems for expressing recombinant proteins. In the present study, the amount of DrsB1-CBDAvr4 recombinant protein in hairy and adventitious root systems was compared. To this end, the effect of different factors on the optimization of culture conditions to obtain adventitious and hairy roots was evaluated in three separate experiments by assessment of...
متن کاملGenetic analysis of adventitious root formation with a novel series of temperature-sensitive mutants of Arabidopsis thaliana.
When cultured on media containing the plant growth regulator auxin, hypocotyl explants of Arabidopsis thaliana generate adventitious roots. As a first step to investigate the genetic basis of adventitious organogenesis in plants, we isolated nine temperature-sensitive mutants defective in various stages in the formation of adventitious roots: five root initiation defective (rid1 to rid5) mutant...
متن کاملAnalysis of Microtubule-Associated-Proteins during IBA-Mediated Adventitious Root Induction Reveals KATANIN Dependent and Independent Alterations of Expression Patterns
Adventitious roots (AR) are post embryonic lateral organs that differentiate from non-root tissues. The understanding of the molecular mechanism which underlies their differentiation is important because of their central role in vegetative plant propagation. Here it was studied how the expression of different microtubule (MT)-associated proteins (MAPs) is affected during AR induction, and wheth...
متن کاملLocalized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis.
Adventitious roots emerge from aerial plant tissues, and the induction of these roots is essential for clonal propagation of agriculturally important plant species. This process has received extensive study in horticultural species but much less focus in genetically tractable model species. We have explored the role of auxin transport in this process in Arabidopsis (Arabidopsis thaliana) seedli...
متن کامل